Task allocation is a key issue of agent cooperation mechanism in Multi-Agent Systems. The important features of an agent system such as the latency of the network infrastructure, dynamic topology, and node heterogeneity impose new challenges on the task allocation in Multi-Agent environments. Based on the traditional parallel computing task allocation method and Ant Colony Optimization (ACO), a novel task allocation method named Collection Path Ant Colony Optimization (CPACO) is proposed to achieve global optimization and reduce processing time. The existing problems of ACO are analyzed; CPACO overcomes such problems by modifying the heuristic function and the update strategy in the Ant-Cycle Model and establishing a three-dimensional path pheromone storage space. The experimental results show that CPACO consumed only 10.3% of the time taken by the Global Search Algorithm and exhibited better performance than the Forward Optimal Heuristic Algorithm.