The essence of dynamic failure is closely linked to dramatic shear deformations which often lead to the formation of adiabatic shear bands (ASB). Under high loading velocities and the subsequent rapid temperature increase, the localization of shear strain is crucial in view of safety issues of systems in mechanical and aircraft engineering, especially with respect to fast rotating components and diverse crash scenarios. In this research, we perform high speed impact tests at the split Hopkinson pressure bar (SHPB) setup and use particular hat-shaped specimen geometries that resemble the stresses and failure conditions at the component level.In the first step, we specify a notched specimen geometry using finite element (FE) simulations to ensure pure shear. Further, quasi-static compressive tests and a series of impact tests at high strain rates of 103−104s−1 are conducted on specimens manufactured from a fine-grain structural steel with the properties of S355. Optical microscopy and electron backscatter diffraction (EBSD) of the sheared zones unveil significant localization to maximal shear strains of about 0.9 accompanied by grain refinement by factors 5 to 14. The displacements across the surface of the specimens are captured with subset-based local digital image correlation (DIC) during the impact time, and serve as an objective to validate a viscoplastic constitutive relationship. More precisely, the deformation distribution is accurately reproduced by the widely recognized Johnson-Cook (JC) model, which features an enhanced description of damage evolution. Thus, combining experimental and characterization techniques, continuum mechanics and reasonable optimization strategies for the identification of model parameters provides an efficient approach for comprehensive insights into the strain localization behaviour and its impact on the mechanical performance of S355 under extreme strain rates and deformations.