Engineered porous geometries composed of low-density lossy materials are promising as broadband absorbers due to their tunable structural attenuation that can selectively manipulate electromagnetic (EM) waves. However, the exposed cellular architectures require mechanical reinforcement and additional packaging. Here, we present a multifunctional meta-sandwich structure as one seamlessly integrated component composed of functional faceplates and dielectric lossy material-based octet-truss geometries toward a lightweight, load-bearing, and high-performance broadband EM wave absorber. EM responses are explored in the 4–18 GHz range by varying material combinations and multilayers of the upper-lower faceplates and the octet-truss core, elucidating the absorbing mechanisms of meta-sandwich structures. Multi-material 3D printing that streamlines the production of the seamless meta-sandwich composite into a single step implements the devised design that simultaneously excel in EM wave absorption and mechanical functionalities. The fabricated composite in a thin, single-layer structure comprising a transmitting upper faceplate, a dielectric lossy core, and a reflecting lower faceplate, achieves an average absorption rate of 95.0 % and a broadband reflection loss (≤-10 dB) over the entire measured bandwidth. Furthermore, flexural testing confirms superior bending resistance compared to conventional honeycomb structures. The multi-materials meta-sandwich design will inspire versatile multifunctionalities enabled by rationally combining mechanical metamaterials and functional housing.
Read full abstract