The b-type cytochrome LcpK30 is a latex clearing protein (Lcp), which acts as an endotype dioxygenase to catalyze the extracellular cleavage of the chemically inert aliphatic polymer poly(cis-1,4-isoprene), producing oligo-isoprenoids with different terminal carbonyl groups (aldehyde and ketone, -CH2-CHO and -CH2-COCH3). On the basis of the fact that the muteins of E148A, E148Q, and E148H have substantially reduced reactivity, and the E148-initiated reaction mechanism has been previously proposed, in which a cyclic dioxetane intermediate or an epoxide intermediate may be involved, however, open questions still remain. In this paper, on the basis of the crystal structure of LcpK30, the enzyme-substrate reactant model was constructed, and the cleavage mechanism of the central double bond of poly(cis-1,4-isoprene) was elucidated by performing quantum mechanics/molecular mechanics calculations. Our calculation results revealed that the oxidative cleavage reaction is triggered by the addition of the heme-bound dioxygen to the double bond of the polymer, and E148 does not act as the catalytic base to extract the allylic proton to assist the reaction as previously suggested. Of the two considered pathways, the pathway that involves the dioxetane intermediate was calculated to be more favorable. During the catalysis, the distal oxygen first adds to the double bond of the substrate to form a radical intermediate, and then the Fe-O1 (proximal oxygen) bond cleaves to generate the dioxetane intermediate, which can easily collapse affording the final ketone and aldehyde products. In general, the cleavage mechanism of double C-C bond catalyzed by LcpK30 is similar to those of indoleamine 2,3-dioxygenase, tryptophan 2,3-dioxygenase, and the nonheme stilbene cleavage oxygenase NOV1 that all depend on the iron-bound dioxygen to initiate the cleavage reaction.
Read full abstract