We developed a model of feldspar nucleation delay during decompression in water-saturated rhyolite based on classical nucleation theory (CNT). With the thermodynamic and kinetic parameters proposed in this study, the model agrees with the experimental results of this study to within a factor of two. To account for the variety of conditions encountered by magma during ascent, we propose expanding the model, developed in this study for isothermal decompression, to a wider range of pressures and temperatures (i.e. non-isothermal conditions). We present new measurements of feldspar growth rates during decompression in water-saturated rhyolite, emphasizing the importance of accurately calculating the nucleation delay in order to estimate growth rates. Using these data, we propose a method for estimating the ascent rate of water-saturated rhyolite based on the nucleation delay of feldspar microlites. The findings of this study hold the promise of a better understanding of volcanic timescales during magma ascent in the conduit, as well as the possibility of extending our model to more complicated scenarios with changing pressure and temperature.