Accurate relative humidity (RH) measurement is critical in many applications, from process control and material preservation to ensuring human comfort and well-being. This study presents high-performance humidity sensors based on titanium oxide nanoparticles/graphene oxide (TiO2/GO) composites, which demonstrate excellent sensing capabilities compared to pure GO-based sensors. The multilayer structure of the TiO2/GO composites enables the enhanced adsorption of water molecules and improved dynamic properties while providing dual-mode sensing capability through both resistive and capacitive measurements. Sensors with different TiO2/GO ratios were systematically investigated to optimize performance over different humidity ranges. The TiO2/GO sensor achieved remarkable sensitivity (8.66 × 104 Ω/%RH), a fast response time (0.61 s), and fast recovery (0.87 s) with minimal hysteresis (4.09%). In particular, the sensors demonstrated excellent mechanical stability, maintaining reliable performance under bending conditions, together with excellent cyclic stability and long-term durability. Temperature dependence studies showed consistent performance under controlled temperature conditions, with the potential for temperature-compensated measurements. These results highlight TiO2/GO nanocomposites as promising candidates for next-generation humidity sensing applications, offering enhanced sensitivity, mechanical flexibility, and operational stability. The dual-mode sensing capability combined with mechanical durability opens up new possibilities for flexible and wearable humidity-sensing devices.
Read full abstract