Upper airway neuromuscular response to air pressure during inhalation is an important factor in assessing pediatric subjects with obstructive sleep apnea (OSA). The neuromuscular response's strength, timing, and duration all contribute to the potential for airway collapses and the severity of OSA. This study quantifies these factors at the soft palate, tongue, and epiglottis to assess the relationship between neuromuscular control and OSA severity in 20 pediatric subjects with and without trisomy 21, under dexmedetomidine-induced sedation. The interaction between neuromuscular force and airflow pressure force was assessed based on power transferred between the airway wall and airflow calculated from airway wall motion (from cine magnetic resonance images) and air pressure acting on the airway wall (from computational fluid dynamics simulations). Airway wall motion could be asynchronous with pressure forces due to neuromuscular activation, or synchronous with pressure forces, indicating a passive response to airflow. The obstructive apnea-hypopnea index (oAHI) quantified OSA severity. During inhalation, the normalized work done through asynchronous dilation of the airway at the soft palate, tongue, and epiglottis correlated significantly with oAHI (Spearman's ρ = 0.54, 0.50, 0.64; P = 0.03, 0.03, 0.003). Synchronous collapse at the epiglottis correlated significantly with oAHI (ρ = 0.52; P = 0.02). Temporal order of synchronous and asynchronous epiglottis motion during inhalation predicted the severity of OSA (moderate vs. severe) with 100% sensitivity and 70% specificity. Subjects with severe OSA and/or trisomy 21 have insufficient neuromuscular activation during inhalation, leading to collapse and increased neuromuscular activation. Airflow-driven airway wall motion during late inhalation likely is the main determinant of OSA severity.NEW & NOTEWORTHY This is the first study that combines cine MRI and computational fluid dynamics with in vivo synchronous respiratory flow measurement to quantify the interaction between airway neuromuscular forces, aerodynamic forces, and airway anatomy noninvasively in pediatric patients with obstructive sleep apnea (OSA). The results indicate power transfer predicts OSA severity.
Read full abstract