Reducing the operating temperature of electronic components is an effective method for enhancing their performance. Selecting suitable thermal management materials is crucial for optimizing cooling efficiency. Normal spectral emissivity, a dimensionless physical quantity, is key in assessing a material’s capability for radiative cooling. This paper outlines the construction of a reflective infrared emissivity measurement apparatus using the IS-50 Fourier Transform Infrared Spectrometer. A gold-coated diffuse integrating sphere was strategically placed in the spectrometer’s sample chamber. By ingeniously leveraging the spectrometer’s original optical path, a dual-sided gold-coated mirror was employed to capture both incident and reflected light, enabling accurate measurements of the normal spectral emissivity of materials used for cooling electronic components. The measurement results for typical materials were consistent with those reported in the literature, satisfyingly so. The uncertainty of the measurement setup was thoroughly evaluated, achieving a combined uncertainty of better than 1 %. This experimental study measured the normal spectral emissivity of various thermal management materials and analyzed the influence of temperature on normal spectral emissivity. These results provide crucial data support for thermal design, simulation analysis, and temperature monitoring in the development of thermal structures for electronic components.