In permanent seed implant prostate brachytherapy the actual dose delivered to the patient may be less than that calculated by TG-43U1 due to interseed attenuation (ISA) and differences between prostate tissue composition and water. In this study the magnitude of the ISA effect is assessed in a phantom and in clinical prostate postimplant cases. Results are compared for seed models 6711 and 9011 with 0.8 and 0.5 mm diameters, respectively. A polymethyl methacrylate (PMMA) phantom was designed to perform ISA measurements in a simple eight-seed arrangement and at the center of an implant of 36 seeds. Monte Carlo (MC) simulation and experimental measurements using a MOSFET dosimeter were used to measure dose rate and the ISA effect. MC simulations of 15 CT-based postimplant prostate treatment plans were performed to compare the clinical impact of ISA on dose to prostate, urethra, rectum, and the volume enclosed by the 100% isodose, for 6711 and 9011 seed models. In the phantom, ISA reduced the dose rate at the MOSFET position by 8.6%-18.3% (6711) and 7.8%-16.7% (9011) depending on the measurement configuration. MOSFET measured dose rates agreed with MC simulation predictions within the MOSFET measurement uncertainty, which ranged from 5.5% to 7.2% depending on the measurement configuration (k = 1, for the mean of four measurements). For 15 clinical implants, the mean ISA effect for 6711 was to reduce prostate D90 by 4.2 Gy (3%), prostate V100 by 0.5 cc (1.4%), urethra D10 by 11.3 Gy (4.4%), rectal D2cc by 5.5 Gy (4.6%), and the 100% isodose volume by 2.3 cc. For the 9011 seed the mean ISA effect reduced prostate D90 by 2.2 Gy (1.6%), prostate V100 by 0.3 cc (0.7%), urethra D10 by 8.0 Gy (3.2%), rectal D2cc by 3.1 Gy (2.7%), and the 100% isodose volume by 1.2 cc. Differences between the MC simulation and TG-43U1 consensus data for the 6711 seed model had a similar impact, reducing mean prostate D90 by 6 Gy (4.2%) and V100 by 0.6 cc (1.8%). ISA causes the delivered dose in prostate seed implant brachytherapy to be lower than the dose calculated by TG-43U1. MC simulation of phantom seed arrangements show that dose at a point can be reduced by up to 18% and this has been validated using a MOSFET dosimeter. Clinical simulations show that ISA reduces DVH parameter values, but the reduction is less for thinner seeds.
Read full abstract