We present a differential laser absorption spectroscopy (DLAS) system operating at 1550 nm for rapid and sensitive gas concentration measurements. A dual-wavelength toggling mechanism is presented, which significantly reduces data processing, hence supporting a high update rate and data robustness against fast-changing environmental conditions. We showcase the ability to toggle between two wavelengths separated by 90 pm in 14 μs and with minimal chirp (∼1 pm), facilitating sensitive DLAS measurements at 8 kHz update rate. This performance is achieved by driving a 1550 nm diode laser with a modified square-wave current pulse, overcoming the thermal time constant limited wavelength-modulation response of the diode laser. A sensitive feedback mechanism ensures excellent long-term wavelength stability better than 1.4 pm peak-to-peak at 8 kHz toggling over 20 h. As a performance test, we measured the volumetric ratio (VMR) of hydrogen cyanide (HCN) gas in a fiber-coupled gas cell with less than 0.2% peak-to-peak variation over 20 h at 40 Hz. A best sensitivity in VMR of 8×10−6 was achieved at 25 ms integration time. The simplicity and high update rate of our system make it well-suited for gas monitoring in dynamic atmospheric and industrial environments. Further, it offers potential utility in applications requiring precise wavelength control, such as injection seeding of pulsed lasers. A simple analytical model is derived, which, in detail, supports the experimental results, hence offering a tool for future design optimization.
Read full abstract