Non-degradable coatings made of petroleum-based plastics hinder the degradation performance of products. This highlights the urgent need to develop biodegradable, bio-based coatings derived from renewable resources to create a more sustainable and greener world with a smaller environmental footprint. This study endeavours to examine the effects of beeswax and coconut oil additions on the morphological, degradation, and water-barrier properties of mycelium-based composite (MBC). Coconut oil is supplemented with varying amounts of beeswax, comprising 0, 20, 40, 60, 80, and 100 wt%. Dip coating is applied to prepare coated-MBC at 65 °C for 2 min. The coated-MBC is characterized by water absorption test, water loss measurement, density measurement, yeast and mould test, shrinkage measurement, weight loss measu rement, soil burial test, Scanning Electron Microscopy (SEM) and macroscopic appearance. Findings revealed that a higher composition of beeswax (80 BW) leads to lower water absorption ability (26.25 %) and no fungal growth for 36 days, in contrast to uncoated-MBC (0 BW), which are used as a reference sample.