Remote inflammation monitoring with digital health technologies (DHTs) would provide valuable information for both clinical research and care. Controlled perturbations of the immune system may reveal physiological signatures which could be used to develop a digital biomarker of inflammatory state. In this study, molecular and physiological profiling was performed following an invivo lipopolysaccharide (LPS) challenge to develop a digital biomarker of inflammation. Ten healthy volunteers received an intravenous LPS challenge and were monitored for 24 h using the VitalConnect VitalPatch (VitalPatch). VitalPatch measurements included heart rate (HR), heart rate variability (HRV), respiratory rate (RR), and skin temperature (TEMP). Conventional episodic inpatient vital signs and serum proteins were measured pre- and post-LPS challenge. The VitalPatch provided vital signs that were comparable to conventional methods for assessing HR, RR, and TEMP. A pronounced increase was observed in HR, RR, and TEMP as well as a decrease in HRV 1-4 h post-LPS challenge. The ordering of participants by magnitude of inflammatory cytokine response 2 h post-LPS challenge was consistent with ordering of participants by change from baseline in vital signs when measured by VitalPatch (r = 0.73) but not when measured by conventional methods (r = -0.04). A machine learning model trained on VitalPatch data predicted change from baseline in inflammatory protein response (R2 = 0.67). DHTs, such as VitalPatch, can improve upon existing episodic measurements of vital signs by enabling continuous sensing and have the potential for future use as tools to remotely monitor inflammation.