3, 3′, 4, 4′, 5-pentachlorobiphenyl (PCB126) is extensively utilized in electronic products, lubricant, and insecticide due to its excellent chemical stability and insulation prosperity, resulting in its frequent detection in environment. In addition, atmospheric deposition, as well as industrial and urban wastewater discharge can also lead to PCB126 contamination in marine environment, triggering damages to the tissues of aquatic organisms through oxidative stress. Astilbin is a type of flavonoid compound found in plants that plays a crucial role in providing powerful antioxidant and anti-inflammatory properties. In this study, we aimed to investigate the specific mechanism of PCB126-induced damage and the potential protective effect of Astilbin. To achieve this, we treated grass carp hepatocytes (L8824) with 75 μM PCB126 and/or 0.5 mM Astilbin for 24 h and used experimental methods such as Flow cytometry, molecular docking, PPI analysis, detection of commercial kits (ATP concentration and ATPnase activity) and measurement of mitochondrial membrane potential (ΔΨm). Our findings revealed that PCB126 exposure resulted in a decrease in expression levels of Sirt1, factors related to mitochondrial fusion (Opa1, Mfn1, and Mfn2), antioxidant (CAT, SOD1, and SOD2), energy metabolism (PKM2, IDH, and SDH) and anti-apoptosis (Bcl-2), and an increase in expression levels of Nrf2 acetylation, mitochondrial fission (Drp1), factors that promote apoptosis (Cytc, Bax, Cas9, and Cas3) in L8824 cells. Furthermore, our findings revealed a decrease in ΔΨm, ATP concentration and ATPnase activity and apoptosis levels in L8824 cells. Noteworthy, treatment with Astilbin reversed these results. Molecular docking provides solid evidence for the interaction between Astilbin and Sirt1. In summary, our findings suggested that Astilbin promoted the deacetylation of Nrf2 by interacting with Sirt1, thereby alleviating PCB126-induced mitochondrial apoptosis mediated by mitochondrial dynamics imbalance and energy metabolism disorder through the inhibition of oxidative stress in L8824 cells. Our research has initially revealed the correlation between acetylation and apoptosis induced by PCB126, which provided a foundation for a better comprehension of PCB126 toxicity. Additionally, it expanded the potential application value of Astilbin.