AbstractBipolar organic materials have emerged as promising cathode materials for rechargeable batteries because of their high voltage and high capacity. However, they suffer from poor cyclic stability and slow reaction kinetics. In this work, we designed and synthesized two bipolar organic cathode materials, containing carbonyl (n‐type) and amine (p‐type) functional groups, as well as extended conjugation structures, for Na‐ion batteries (NIBs) and rechargeable aluminum batteries (RABs). As universal electrode materials, bipolar organic materials exhibited exceptional electrochemical performance in terms of high capacity, high voltage, long cycle life, and fast rate capability. The extended conjugation structures in backbones of the bipolar organic materials facilitate the π–π stacking with graphene, playing a critical role in the high performance. Furthermore, the formation of a stable and robust NaF‐rich cathode electrolyte interphase was shown to stabilize the bipolar organic cathode in NIBs. Electrochemical kinetic measurements reveal that both functional groups undergo reversible redox reactions. Specifically, the electron transfer rate constant of the p‐type amine group is one order of magnitude higher than that of the n‐type carbonyl group. These results highlight the efficacy of developing bipolar organic materials for achieving high‐performance organic cathode in NIBs and RABs.
Read full abstract