Hemiplegic individuals often demonstrate gait abnormality causing asymmetry in lower-limb muscle activation-related (implicit) and gait-related (explicit) measures (offering complementary information on one's gait) while walking. Added to hemiplegia, such asymmetry can be aggravated while walking under varying task conditions, namely, walking without speaking (single task), walking while counting backwards (dual task), and walking while holding an object and counting backwards (multiple task). This emphasizes the need to quantify the extent of aggravated implication of multiple-task and dual-task on gait asymmetry compared to single task. Here, we used Integrated Wearable System and carried out a study with a group of age-matched hemiplegic (Grp_S) and healthy (Grp_H) individuals to understand the potential of our system in quantifying asymmetry in explicit and implicit measures of gait, implication of hemiplegic condition and varying task conditions on these asymmetry measures along with their clinical relevance. Results showed the potential of our system in quantifying asymmetry in both explicit and implicit measures of gait, and these measures were statistically higher (p-value < 0.05) in Grp_S than Grp_H irrespective of the task conditions. Also, for Grp_S, these asymmetry measures became more pronounced as task demand increased, and again, these measures have shown a correlation with their risk of fall specifically during more attention-demanding tasks that could be clinically relevant.
Read full abstract