Ammonia volatilization from animal slurry applied to agricultural fields reduces nitrogen use efficiency in agriculture and pollutes the environment. This work presents new versions of a model and database focused on this route of N loss. The public ALFAM2 database (https://github.com/AU-BCE-EE/ALFAM2-data) was expanded with ammonia emission and ancillary measurements for >700 additional field plots. The ALFAM2 model (https://github.com/AU-BCE-EE/ALFAM2, https://zenodo.org/records/13312251) was extended with the addition of an ammonia sink for more plausible predictions over extended durations and to better reflect the expected reduction in emission rate several days after slurry application. A new parameter set was developed for the model taking into account the newly available measurement data. Model efficiency improved to 0.67 for the parameter estimation subset (0.52 for cross-validation) and mean absolute error was around 10% of applied total ammoniacal nitrogen. As in earlier versions, predicted emission is sensitive to application method, slurry dry matter and pH, air temperature, and wind speed. A collection of parameter sets for estimating uncertainty in average predictions was developed using a bootstrap approach. Predicted uncertainty is not trivial, and is high for some variable combinations, highlighting the challenge of making predictions based on available measurement data. Still, this work has resulted in more accurate, comprehensive, transparent, and flexible tools for emission inventory and related work on ammonia loss from field-applied slurry.