This study assesses radiation doses in multi-slice computed tomography (CT) using epoxy resin and PMMA phantoms, focusing on the relationship between TAR (tissue air ratio) and kilovoltage peak (kVp). The research was conducted using a Hitachi Supria 16-slice CT scanner. An epoxy resin phantom was fabricated from commercially available materials, to simulate human tissue. The phantom contained four peripheral inserts and one central insert for dose measurement, with optically stimulated luminescent dosimeters positioned at various depths (2 to 10cm). Monte Carlo simulations were executed using the Geant4 Application for Tomographic Emission toolkit (GATE) to model photon transport, with the x-ray spectrum generated using SpekPy software. A non-linear fitting model was developed to describe the TAR-kVp relationship across different depths for epoxy resin and PMMA. Results indicated that TAR values were higher at low depths (2cm) and decreased with increasing depth, reflecting the x-ray beam's attenuation. For instance, at 80 kVp and 2cm depth, the experimental TAR for PMMA was 1.102 ± 0.011, closely matching the MC simulation value of 1.110 ± 0.036, resulting in a small difference of 0.7%. At a depth of 10cm, the experimental TAR for PMMA decreased to 0.245 ± 0.006, while the MC TAR was 0.248 ± 0.016, with a relative difference of 1.2%. Similar trends were observed for epoxy resin, where the experimental TAR ranged from 1.070 ± 0.014 at 2cm to 0.235 ± 0.009 at 10cm, while MC simulation values ranged from 1.080 ± 0.038 to 0.238 ± 0.017. Bland-Altman analysis confirmed these results, with mean differences of 0.008 for PMMA and 0.006 for epoxy resin, indicating high agreement between the experimental and simulated TAR values. This study highlights the importance of phantom material selection in dose assessment and the implications of TAR in dose correction within the context of diagnostic radiology.
Read full abstract