The ‘Body Mass Index’ (BMI) is an anachronistic and outdated ratio that is used as an internationally accepted diagnostic criterion for obesity, and to prioritise, stratify, and outcome-assess its management options. On an individual level, the BMI has the potential to mislead, including inaccuracies in cardiovascular risk assessment. Furthermore, the BMI places excessive emphasis on a reduction in overall body weight (rather than optimised body composition) and contributes towards a misunderstanding of the quiddity of obesity and a dispassionate societal perspective and response to the global obesity problem. The overall objective of this review is to provide an overview of obesity that transitions away from the BMI and towards a novel vista: viewing obesity from the perspective of the skeletal muscle (SM). We resurrect the SM as a tissue hidden in plain sight and provide an overview of the key role that the SM plays in influencing metabolic health and efficiency. We discuss the complex interlinks between the SM and the adipose tissue (AT) through key myokines and adipokines, and argue that rather than two separate tissues, the SM and AT should be considered as a single entity: the ‘Adipo–Muscle Axis’. We discuss the vicious circle of sarcopenic obesity, in which aging- and obesity-related decline in SM mass contributes to a worsened metabolic status and insulin resistance, which in turn further compounds SM mass and function. We provide an overview of the approaches that can mitigate against the decline in SM mass in the context of negative energy balance, including the optimisation of dietary protein intake and resistance physical exercises, and of novel molecules in development that target the SM, which will play an important role in the future management of obesity. Finally, we argue that the Adipo–Muscle Ratio (AMR) would provide a more clinically meaningful descriptor and definition of obesity than the BMI and would help to shift our focus regarding its effective management away from merely inducing weight loss and towards optimising the AMR with proper attention to the maintenance and augmentation of SM mass and function.
Read full abstract