The Shanker distribution, a one-parameter lifetime distribution with an increasing hazard rate function, is recommended by Shanker for modelling lifespan data. In this study, we examine the theoretical and practical implications of 2-component mixture of Shanker model (2-CMSM). A significant feature of proposed model’s hazard rate function is that it has rising, decreasing, and upside-down bathtub forms. We investigate the statistical characteristics of a mixed model, such as the probability-generating function, the factorial-moment-generating function, cumulants, the characteristic function, the Mills ratio, the mean residual life, and the mean time to failure. There is a graphic representation of density, mean, hazard rate functions, coefficient of variation, skewness, and kurtosis. Our final approach is to estimate the parameters of the mixture model using appropriate approaches such as maximum likelihood, least squares, and weighted least squares. Using a simulation analysis, we examined how the estimates behaved graphically. The simulation results demonstrated that, in the majority of cases, the maximum likelihood estimates have the smallest mean square errors among all other estimates. Finally, we observed that when the sample size rises, the precision measures decrease for all of the estimation techniques, indicating that all of the estimation approaches are consistent. Through two real data analyses, the suggested model’s validity and adaptability are contrasted with those of other models, including the mixture of the exponential distributions and the Lindley distributions .
Read full abstract