Abstract The causes of historical changes in the Southern Hemisphere (SH) monsoon are less understood than the Northern Hemisphere (NH) counterpart. Unlike the decline in the NH monsoon during 1901–2014, we found that the SH land monsoon precipitation significantly increased during 1901–2014 in observation, reanalysis, and most historical simulations from phase 6 of the Coupled Model Intercomparison Project (CMIP6). The observed increase in SH land monsoon precipitation is dominated by the Australian and South American monsoons. Moisture budget analysis suggests that half of the wettening is attributable to the strengthening of monsoon circulation, and only one-fifth is caused by atmospheric moistening. The SH monsoon circulation change is mainly affected by the sea surface temperature (SST) gradient between the Indo-Pacific and the eastern Pacific. It enhances the tropical zonal circulation that redistributes the moisture from tropical oceans to land monsoon regions by strengthening the lower-tropospheric convergence and convection. The CMIP6 models, which successfully reproduced the SST contrast between the Indo-Pacific and eastern Pacific, simulate the wettening of the SH monsoon during the historical period; otherwise, the SH monsoon is weakened. In a meridional sense, reanalysis and CMIP6 simulations both demonstrated that the strengthening of SH monsoon convection plays a vital role in the long-term change of zonal mean Hadley circulation, albeit the monsoon band only accounts for 1/3 of the global longitudinal area. Results from this study are useful for constraining the future projection of SH monsoon and understanding the long-term change of Hadley circulation.
Read full abstract