Abstract Direct numerical simulations (DNS) have been utilised to investigate the impact of different thermal wall boundary conditions on premixed V-flames interacting with walls in a turbulent channel flow configuration. Two boundary conditions are considered: isothermal walls, where the wall temperature is set either equal to the unburned mixture temperature or an elevated temperature, and adiabatic walls. An increase in wall temperature has been found to decrease the minimum flame quenching distance and increase the maximum wall heat flux magnitude. The analysis reveals notable differences in mean behaviours of the progress variable and non-dimensional temperature in response to thermal boundary conditions. At the upstream of the flameâwall interaction location, higher mean friction velocity values are observed for the case with elevated wall temperature compared to the other cases. However, during flameâwall interaction, friction velocity values decrease for isothermal walls but initially rise before decreasing for adiabatic walls, persisting at levels surpassing isothermal conditions. For all thermal wall boundary conditions, the mean scalar dissipation rates of the progress variable and non-dimensional temperature exhibit a decreasing trend towards the wall. Notably, in the case of isothermal wall boundary condition, a higher scalar dissipation rate for the non-dimensional temperature is observed in comparison to the scalar dissipation rate for the progress variable. Thermal boundary condition also has a significant impact on Reynolds stress components, turbulent kinetic energy, and dissipation rates, showing the highest magnitudes with isothermal case with elevated wall temperature and the lowest magnitude for the isothermal wall with unburned gas temperature. The findings of the current analysis suggest that thermal boundary conditions can potentially significantly affect trubulence closures in the context of Reynolds averaged NavierâStokes simulations of premixed flameâwall interaction.
Read full abstract