Black hole solutions of type IIB supergravity have been previously constructed that describe the N=4 supersymmetric Yang-Mills plasma with an anisotropic spatial deformation. The zero temperature limit of these black holes approach a Lifshitz-like scaling solution in the infrared. We show that these black holes become unstable at low temperature and we construct a new class of black hole solutions which are thermodynamically preferred. The phase transition is third order and incorporates a spontaneous breaking of the $SO(6)$ global symmetry down to $SO(4)\times SO(2)$. The critical exponents for the phase transition are given by $(\alpha,\beta,\gamma,\delta)=(-1,1,1,2)$ which differ from the standard mean-field exponents usually seen in holography. At low temperatures the black holes approach a novel kind of scaling behaviour in the far IR with spatial anisotropy and hyperscaling violation. We show that the new ground states are thermal insulators in the direction of the anisotropy.