It is shown that a model with accretion in a “quasi-propeller” mode can explain the observed spindown of pulsars with periods P<0.1 s. The mean accretion rate for 39 selected objects is \(\dot M = 5.6 \times 10^{ - 11} M_ \odot /year\). If \(\dot M\) is constant during the pulsar’s lifetime, the neutron star will stop rotating after 107 years. The mean magnetic field at the neutron-star surface calculated in this model, \(\bar H_0 = 6.8 \times 10^8 G\), is consistent to an order of magnitude with the values of H0 for millisecond pulsars from known catalogs. However, the actual value of H0 for particular objects can differ from the catalog values by appreciable factors, and these quantities must be recalculated using more adequate models. The accretion disk around the neutron star should not impede the escape of the pulsar’s radiation, since this radiation is generated near the light cylinder in pulsars with P<0.1 s. Pulsars such as PSR 0531+21 and PSR 0833-45 have probably spun down due to the effect of magnetic-dipole radiation. If the difference in the braking indices for these objects from n=3 is due to the effect of accretion, the accretion rate must be of the order of 1018 g/s.