Taking the Mongolian Plateau as the study area, the MODIS normalized difference vegetation index (NDVI) and the land surface temperature (LST) in the growing season from 2000 to 2019 were used to construct the NDVI-LST feature space, and based on which the temperature vege-tation dryness index (TVDI) of the Mongolian Plateau was calculated. We used Theil-Sen Median trend analysis, Mann-Kendall test, and Hurst index method to analyze the spatial and temporal varia-tions and future trends of TVDI on the Mongolian Plateau. Furthermore, we examined the relationship between meteorological factors and TVDI on the Mongolian Plateau using partial correlation analysis. The results showed that the TVDI of the Mongolian Plateau during 2000-2019 showed an increasing trend with a rate of 0.0001·a-1, indicating that the Mongolian Plateau's drought condition became heavier slightly in the last 20 years. The drought condition in meadow steppe and typical steppe gradually decreased, and that in desert steppe and alpine grassland was increased. The average Hurst index of TVDI in the growing season was 0.45, and the area with TVDI less than 0.5 accounted for 71.5% of the total area, which indicated that the TVDI during 2000-2019 in most areas turned opposite to the past. In the future, the drought condition in the central desert steppe area and the eastern meadow steppe area might increase, and that in most of the typical steppe and the desert steppe in Inner Mongolia tended to decrease. The drought change in the alpine grassland area was uncertain. There was a significant positive correlation between the TVDI and temperature in 33.6% area of the Mongolian Plateau and a significant negative correlation between the TVDI and precipitation in 34.8% of the area. Moreover, the meteorological factors heavily affected the typical steppe.
Read full abstract