Backgrounds/AimsMitochondrial dysfunction plays an important role inthe pathogenesis of nonalcoholic steatohepatitis (NASH), where uncoupling protein (UCP) is actively involved. We previously reported the uncoupling activity of HDMCP and its role in liver steatosis. We now aim to investigate the degree and therapeutic effect of HDMCP in NASH and the regulatory role of miR-146 on HDMCP.MethodsNASH animal model was established by feeding BALB/c mice with MCD diet while L02 cell was cultured with high concentration of fatty acid (HFFA) for 72h to mimic the steatosis and inflammation of NASH in-vitro appearance. The steatosis level was assessed by H-E/oil-red staining and serum/supernatant marker detection. The inflammation activity was evaluated by levels of Hepatic activity index, transwell, apoptosis degree (TUNEL/flow cytometry) and serum/supernatant marker. HDMCP level was detected by western blot and miRNA expression was tested by qRT-PCR. NASH severity change was recorded after RNA interference while the regulatory role of miR-146 on HDMCP was confirmed by dual luciferase report system. The H2O2 and ATP levels were measured for mechanism exploration.ResultsIncreased HDMCP expression was identified in NASH animal model and HFFA-72h cultured L02 cell. Moreover, under regulation of miR-146, NASH alleviation was achieved after HDMCP downregulation in both in vivo and in vitro, according to the declination of steatosis and inflammation related markers. Though H2O2 and ATP levels were increased and decreased in NASH models, HDMCP down regulation both increased their levels.ConclusionsThe miR-146-HDMCP-ATP/H2O2 pathway may provide novel mechanism and treatment option for NASH.