This paper presents a phenomenological thermal-mechanical viscoelastic constitutive modeling for polypropylene wood composites. Polypropylene (PP) wood composite specimens are compressed at strain rates from 10<sup >−4</sup> to 10<sup >−2</sup> s<sup >−1</sup> and at temperature of <svg style="vertical-align:-0.20474pt;width:32.787498px;" id="M1" height="13.1875" version="1.1" viewBox="0 0 32.787498 13.1875" width="32.787498" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,12.875)"><path id="x39" d="M244 635q90 0 143 -72t53 -177q0 -133 -65 -229.5t-171 -139.5q-79 -32 -140 -32l-5 30q109 18 185 91t101 186l-68 -36q-29 -16 -60 -16q-79 0 -129 51.5t-50 130.5q0 80 57 146.5t149 66.5zM228 602q-52 0 -78 -45.5t-26 -98.5q0 -69 36.5 -115.5t97.5 -46.5
q53 0 90 28q4 31 4 66q0 51 -9.5 95.5t-39 80.5t-75.5 36z" /></g><g transform="matrix(.017,-0,0,-.017,8.222,12.875)"><path id="x30" d="M241 635q53 0 94 -28.5t63.5 -76t33.5 -102.5t11 -116q0 -58 -11 -112.5t-34 -103.5t-63.5 -78.5t-94.5 -29.5t-95 28t-64.5 75t-34.5 102.5t-11 118.5q0 58 11.5 112.5t34.5 103t64.5 78t95.5 29.5zM238 602q-32 0 -55.5 -25t-35.5 -68t-17.5 -91t-5.5 -105
q0 -76 10 -138.5t37 -107.5t69 -45q32 0 55.5 25t35.5 68.5t17.5 91.5t5.5 105t-5.5 105.5t-18 92t-36 68t-56.5 24.5z" /></g> <g transform="matrix(.012,-0,0,-.012,16.375,4.712)"><path id="x2218" d="M326 255q0 -56 -41 -96t-99 -40t-99 40t-41 96t41 96t99 40t99 -40t41 -96zM274 255q0 38 -25.5 65t-62.5 27t-62.5 -27t-25.5 -65t25.5 -65t62.5 -27t62.5 27t25.5 65z" /></g> <g transform="matrix(.017,-0,0,-.017,21.412,12.875)"><path id="x43" d="M614 175l29 -10q-33 -109 -57 -154q-121 -26 -184 -26q-90 0 -160.5 29t-112.5 77t-63.5 105.5t-21.5 119.5q0 157 108 253t277 96q36 0 71.5 -5t69 -13.5t36.5 -8.5q15 -102 20 -150l-29 -8q-20 79 -66.5 114t-128.5 35q-119 0 -187.5 -86t-68.5 -207
q0 -140 73.5 -227.5t188.5 -87.5q73 0 119.5 37.5t86.5 116.5z" /></g> </svg>, <svg style="vertical-align:-0.20473pt;width:40.950001px;" id="M2" height="13.1875" version="1.1" viewBox="0 0 40.950001 13.1875" width="40.950001" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,12.875)"><path id="x31" d="M384 0h-275v27q67 5 81.5 18.5t14.5 68.5v385q0 38 -7.5 47.5t-40.5 10.5l-48 2v24q85 15 178 52v-521q0 -55 14.5 -68.5t82.5 -18.5v-27z" /></g><g transform="matrix(.017,-0,0,-.017,8.222,12.875)"><path id="x33" d="M285 378v-2q65 -13 102 -54.5t37 -97.5q0 -57 -30.5 -104.5t-74 -75t-85.5 -42t-72 -14.5q-31 0 -59.5 11t-40.5 23q-19 18 -16 36q1 16 23 33q13 10 24 0q58 -51 124 -51q55 0 88 40t33 112q0 64 -39 96.5t-88 32.5q-29 0 -64 -11l-6 29q77 25 118 57.5t41 84.5
q0 45 -26.5 69.5t-68.5 24.5q-67 0 -120 -79l-20 20l43 63q51 56 127 56h1q66 0 107 -37t41 -95q0 -42 -31 -71q-22 -23 -68 -54z" /></g><g transform="matrix(.017,-0,0,-.017,16.381,12.875)"><use xlink:href="#x30"/></g> <g transform="matrix(.012,-0,0,-.012,24.538,4.712)"><use xlink:href="#x2218"/></g> <g transform="matrix(.017,-0,0,-.017,29.575,12.875)"><use xlink:href="#x43"/></g> </svg>, and <svg style="vertical-align:-0.20473pt;width:40.950001px;" id="M3" height="13.1875" version="1.1" viewBox="0 0 40.950001 13.1875" width="40.950001" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,12.875)"><use xlink:href="#x31"/></g><g transform="matrix(.017,-0,0,-.017,8.222,12.875)"><path id="x37" d="M447 623l8 -12l-283 -613l-74 -10l-7 11q174 283 297 551h-216q-48 0 -62.5 -12t-33.5 -63h-29q10 60 18 148h382z" /></g><g transform="matrix(.017,-0,0,-.017,16.381,12.875)"><use xlink:href="#x30"/></g> <g transform="matrix(.012,-0,0,-.012,24.538,4.712)"><use xlink:href="#x2218"/></g> <g transform="matrix(.017,-0,0,-.017,29.575,12.875)"><use xlink:href="#x43"/></g> </svg>, respectively. The mechanical responses are shown to be sensitive both to strain rate and to temperature. Based on the Maxwell viscoelastic model, a nonlinear thermal-mechanical viscoelastic constitutive model is developed for the PP wood composite by decoupling the effect of temperature with that of the strain rate. Corresponding viscoelastic parameters are obtained through curve fitting with experimental data. Then the model is used to simulate thermal compression of the PP wood composite. The predicted theoretical results coincide quite well with experimental data. The proposed constitutive model is then applied to the thermoforming simulation of an automobile interior part with the PP wood composites.
Read full abstract