The maximum attainable ductility in the superplastic Zn-22 pct Al eutectoid depends critically on the imposed strain rate, the testing temperature, and the initial grain size. High ductilities are observed at intermediate strain rates, and there is a decrease at both higher and lower rates of strain. It is shown that i) the maximum ductility occurs at higher strain rates as the temperature is increased and/or the initial grain size is decreased, and ii) the maximum attainable ductility increases with increasing temperature and/or decreasing initial grain size. For specimens tested at different temperatures, similar macroscopic fracture characteristics are observed in specimens exhibiting a similar maximum flow stress. The experimental trends are qualitatively explained by relating maximum ductility to the maximum strain rate sensitivity and examining the influence of cavitation on the time to rupture.