Horticulturists have not promoted use of Dirca palustris L. (eastern leatherwood) despite its suite of traits valued by gardeners and landscapers. Horticultural production of D. palustris may be hindered by slow shoot growth and sensitivity of plants to edaphic conditions. Because of discrepancies in reported tolerances of D. palustris to root-zone pH, we assessed whether pH of soils supporting indigenous populations in Florida, Maine, and North Dakota corresponded to responses of seedlings from the three provenances to root-zone pH of 4.5 to 7.3 in soilless media. Regression showed that root zones at pH 5.8 promoted maximum stem length of seedlings from Florida and North Dakota, whereas root zones at pH 4.5 led to maximum stem length of seedlings from Maine. Root-zone pH 5.6 and 5.5 fostered maximum root and shoot dry weight, respectively, for seedlings from Florida, whereas root zones at pH 4.5 promoted maximum root and shoot dry weights of seedlings from Maine and North Dakota. Averaged over provenance, relative leaf greenness decreased by 62%, and foliar nitrogen, iron, manganese, and zinc decreased by 49%, 70%, 95%, and 48%, respectively, as root-zone pH increased from 4.5 to 7.3. Foliar phosphorus decreased at both low and high pH. The pH of soils where seeds were collected did not predict optimal root-zone pH for stem length or biomass accrual in soilless media; genotypes from soils with a pH of 7.4 in North Dakota did not exhibit greater tolerance to high pH than genotypes from Maine or Florida, where pH of indigenous soil was 6.1 and 5.2, respectively. Averaged over pH treatments, seedlings from Florida showed the greatest stem length and formed the most shoot biomass, whereas seedlings from North Dakota had stouter stems, greater root biomass, and greater root-to-shoot ratios than did seedlings from Florida and Maine. Our results illustrate that acidic media facilitate horticultural production of D. palustris, that further evaluation of provenance differences could facilitate selection of genotypes for horticulture, and that tolerances of genotypes to root-zone pH do not strictly correspond to the pH of soils on which they were indigenous.