AbstractTwo soil–water balance models were tested by a comparison of simulated with measured daily rates of actual evapotranspiration, soil water storage, groundwater recharge, and capillary rise. These rates were obtained from twelve weighable lysimeters with three different soils and two different lower boundary conditions for the time period from January 1, 1996 to December 31, 1998. In that period, grass vegetation was grown on all lysimeters. These lysimeters are located in Berlin‐Dahlem, Germany. One model calculated the soil water balance using the Richards equation. The other one used a capacitance approach. Both models used the same modified Penman formula for the estimation of potential evapotranspiration and the same simple empirical vegetation model for the calculation of transpiration, interception, and evaporation. The comparisons of simulated with measured model outputs were analyzed using the modeling‐efficiency index IA and the root mean squared error RMSE. At some lysimeters, the uncalibrated application of both models led to an underestimation of cumulative and annual rates of groundwater recharge and capillary rise, despite a good simulation quality in terms of IA and RMSE. A calibration of soil‐hydraulic and vegetation parameters such as maximum rooting depth resulted in a better fit between simulated and observed cumulative and annual rates of groundwater recharge and capillary rise, but in some cases also decreased the simulation quality of both models in terms of IA and RMSE. The results of this calibration indicated that, in addition to a precise determination of the soil water‐retention functions, vegetation parameters such as rooting depth should also be observed. Without such information, the rooting depth is a calibration parameter. However, in some cases, the uncalibrated application of both models also led to an acceptable fit between measured and simulated model outputs.
Read full abstract