This review covers the following subjects: (1) The chemistry of N-metalated azomethine ylide as a new 1,3-dipole containing a metal atom is studied. This 1,3-dipole, generated from (N-alkylideneamino)alkanoates upon treatment with a Lewis acid and amine base, undergoes rapid 1,3-dipolar cycloadditions toward electron-deficient alkenes. Especially, α,β-unsaturated carbonyl substrates show high rate acceleration to give pyrrolidine-2,4-dicarboxylates in a highly regio- and endo-selective manner. (2) This 1,3-dipolar cycloaddition reaction of (N-alkylideneamino)acetate can be switched into anti-selective Michael addition reaction by modification of substrate structures as well as reaction conditions. (3) Two types of heterocyclic chiral auxiliaries are demonstrated for the asymmetric 1,3-dipolar cycloadditions. One types are attached at the β-position of α,β-unsaturated esters. The resulting chiral α,β-unsaturated esters are successfully applied to the stereoselective asymmetric cycloadditions of N-metalated azomethine ylides. The other types include 4-benzyl-2,2,5,5-tetramethyloxazolidine-3-acrylamides which are based on the conformational control of the acrylamide reaction site and that of steric shielding of 4-benzyl amoiety. These are applied to the absolutely asymmetric nitrile oxide cycloadditions. (4) The nitrone cycloadditions to electron-deficient alkenes is attained in the presence of a Lewis acid catalyst. This provides the first catalytic stereo control of 1,3-dipolar cycloadditions. (5) The extremly effective rate enhancement of nitrile oxide 1,3-dipolar cycloadditions to the magnesium alkoxides of allylic alcohols. Maximum rate enhancement observed is 16,000 fold rate acceleration of the uncatalyzed reaction. This method offers the first successful rate acceleration in nitrile oxide 1,3-dipolar cycloadditions. (6) Use of magnesium alkoxide of allylic alcohols is also highly effectve in nitrone 1,3-dipolar cycloadditons, resulting in high stereo- and regioselectivities. (7) Catalytic enantioselective 1,3-dipolar cycloadditions are achieved by use of nitrones, nitronates, diazomethane, and nitrile oxides in the presence of tolerant chiral catalysts based on our R,R-DBFOX/Ph ligand.
Read full abstract