high-intensity exercise is a feasible and effective modality in the early stages of Parkinson's disease (PD). However, there are only a few studies that have carried out this type of intervention in customizable immersive virtual reality (IVR) environments. We explore the feasibility and effects of IVR-based high-intensity training through rowing and cycling exercises on the functional capacity, quality of life, and progression of PD. a total of 12 participants (61.50 ± 10.49 years old; 41.7% female, 58.3% male; stages I-III) were part of the study, which consisted of interventions of rowing and cycling in an IVR commercial exergame (25 min; twice per week for 14 weeks). The main variables measured were functional capacity, handgrip strength, functional mobility (TUG), functional lower-limb strength (FTSST), aerobic capacity (2-min step test), quality of life (PDQ-39), and Parkinson's disease progression (MDS-UPDRS). the results showed a general improvement in handgrip strength in both hands (p = 0.008; d = 0.28), FTSST (p = 0.029; d = 0.96), and TUG times (p = 0.152; d = 0.22). Aerobic capacity, assessed by a 2-min step test, showed enhanced scores (p = 0.031; d = 0.78). Related to the PDQ-39, all dimensions of the scale were enhanced, highlighting activities of daily living (p = 0.047; d = 0.29) and bodily discomfort (p = 0.041; d = 0.37). Finally, the main symptoms of the disease were reduced, with an improvement in the parameters that show a better incidence of disease progression, such as Part IA and IB (p = 0.013; d = 0.29 and p = 0.021; d = 0.25, respectively), Part II (p = 0.021; d = 0.23), Part III (p = 0.040; d = 0.39), and Part IV (p = 0.013; d = 0.39). the therapeutic exercise (rowing and cycling), when carried out at a high intensity and in a personalized IVR scenario, appear to be a feasible and safe modality for patients with stages I-III of PD, improving their functional capacity, quality of life, and disease progression.