Given that the equipment for the semiconductor packaging line adopts the fixed grouping production method, thus failing to dynamically match the processing task demand capacity, in the present study, we proposed a semiconductor bonding equipment-grouping method based on processing task matching. This method sets the device group closed position constraint and the matching constraint between the device type and the processing type and uses the graph theory method to establish the device grouping model. The dynamic grouping of equipment under the capacity demand of different processing tasks was achieved by changing the relationship matrix between devices. The drawback of this grouping method is rather large grouping deviation, which we tried to solve with the clustering by fast search and find of density peaks (CFSFDP) that was added to cluster the sets of attribute information of the devices so as to obtain the maximum number of grouping groups obtained to reduce the grouping deviation. Simulation comparison experiments were carried out under different circumstances considering the size of the formation, the distribution of demand capacity, and the coefficient of difference in demand capacity. Compared with the standard device grouping method, the grouping method based on semiconductor bonding equipment and CFSFDP algorithm for dynamic matching according to processing tasks had better performance in solving the dynamic grouping problem.