Abstract. On 27 May 1937, after one week of sustained heavy rainfall, a voluminous flood caused the death of at least 300 people and the destruction of the historic El Carmen church and several neighborhoods in the mining region of Tlalpujahua, Michoacán, central Mexico. This destructive flood was triggered by the breaching of the impoundment of the Los Cedros tailings and the sudden release of circa 16 Mt of water-saturated waste materials. The muddy silty flood, moving at estimated speeds of 20–25 m s−1, was channelized along the Dos Estrellas and Tlalpujahua drainages and devastated everything along its flow path. After advancing 2.5 km downstream, the flood slammed into El Carmen church and surrounding houses at estimated speeds of ~ 7 m s−1, destroying many construction walls and covering the church floor with ~ 2 m of mud and debris. Revision of eyewitness accounts and newspaper articles, together with analysis of archived photographic materials, indicated that the flood consisted of three muddy pulses. Stratigraphic relations and granulometric data for selected proximal and distal samples show that the flood behaved as a hyperconcentrated flow along most of its trajectory. A total volume of the Lamas flood deposit was estimated as 1.5 × 106 m3. The physically based bidimensional (2-D) hydraulic model FLO-2D was implemented to reproduce the breached flow (0.5 sediment concentration) with a maximum flow discharge of 8000 m3 s−1 for a total outflow volume (sediment + water) of 2.5 × 106 m3, similar to the calculations obtained using field measurements. Even though premonitory signs of possible impoundment failure were reported days before the flood, and people living downstream were alerted, authorities ordered no evacuations or other mitigative actions. The catastrophic flood at Tlalpujahua provides a well-documented, though tragic, example of impoundment breaching of a tailings dam caused by the combined effects of intense rainfall, dam weakness, and inadequate emergency-management protocols – unfortunately an all-too-common case scenario for most of the world's mining regions.