Higher protein diets (HPDs) have shown favorable outcomes on weight maintenance and body-composition management; however, their protective effects against cardiovascular diseases (CVDs) remain uncertain and contentious. Furthermore, it is important to consider the influence of other macronutrients in the diet and type of dietary protein when studying HPDs, because this aspect has been overlooked in previous studies. We assessed the impacts of quantity and type of dietary protein on CVD risk factors. A database search was conducted in PubMed, Embase, CINAHL, Web of Science, and Cochrane Library and a total of 100 articles met the eligibility criteria. Extracted data from 100 articles were analyzed using standard meta-analysis, and 41 articles were also analyzed using network meta-analysis. In the standard meta-analysis, an HPD had significant favorable effects on systolic blood pressure (SBP) (mean difference [MD] = -1.51 mmHg; 95% CI: -2.77, -0.25), diastolic blood pressure (DBP) (MD = -1.08 mmHg; 95% CI: -1.81, -0.35), and flow-mediated dilation (MD = 0.78%; 95% CI: 0.09, 1.47) compared with lower protein diets. The further network meta-analysis supported that the high-protein, high-carbohydrate, low-fat diet was the most recommended diet to ensure a maximum decrease in SBP, DBP, total cholesterol (TC), and low-density-lipoprotein cholesterol (LDL-C). In comparison to animal-protein-rich diets, plant-protein-rich diets (PPRs) exhibited a significant favorable effects on improving TC (MD = -0.12 mmol/L; 95% CI: -0.19, -0.05), triglyceride (MD = -0.05 mmol/L; 95% CI: -0.09, -0.01), LDL-C (MD = -0.11 mmol/L; 95% CI: -0.18, -0.04), and high-density-lipoprotein cholesterol (MD = 0.03 mmol/L; 95% CI: 0.02, 0.04) levels. Consumption of HPDs and PPRs supports improvements in vascular health and lipid-lipoprotein profiles, respectively. Furthermore, macronutrient composition should be carefully designed in the dietary approach to maximize the effectiveness of HPDs in improving CVD risk factors. PROSPERO registration no. CRD42022369931.
Read full abstract