Deep-sea minerals are regarded as the most economically viable and promising mineral resource. Vertical hydraulic lifting represents one of the most promising methods for deep-sea mining lifting systems. To mitigate the potential for clogging due to the aggregation of particles in vertical pipe transport during deep-sea mining operations, this paper employs numerical simulations utilizing the computational fluid dynamics and discrete element method (CFD-DEM) model to investigate the swirling flow transportation of mineral particles. The characteristics of the swirling flow field and the motion law of double-size particles at different swirling ratios are investigated. The findings demonstrate that, in comparison to axial transport within the pipeline, the particle movement observed in swirling flow transport exhibits an upward spiral trajectory. This phenomenon facilitates the orderly movement of particles, thereby enhancing the fluidization of particles within the pipeline. An increase in the swirling ratio (SR) has a considerable impact on the velocity within the pipe. The tangential velocity distribution undergoes a gradual transition from centrosymmetric to non-centrosymmetric as the distance from the inlet increases. An increase in the SR results in an enhanced aggregation of particles at the wall, accompanied by a notable rise in the local particle concentration. The value of SR = 0.3 represents a critical threshold. When SR exceeds this value, the distribution of particles in the cross-section reaches a relatively stable state, rendering it challenging to further alter the distribution and concentration of particles, even if the SR is augmented. Furthermore, the maximum local particle concentration in the vicinity of the wall tends to be stable. These results provide valuable insights into vertical pipe swirling flow transport for deep-sea mining.
Read full abstract