4H-SiC wafer with alloy backside layer is gradually applied in power devices. However, the laminated structure presents various challenges in manufacturing. In this study, a model for brittle-ductile transition in grinding of laminated materials is established and verified by grinding experiment to ensure the complete removal of the alloy backside layer while achieving ductile removal of the 4H-SiC layer. In the modeling process, the maximum unreformed chip thickness and brittle-ductile transition critical depth of each-layer in the laminated material is deriving, taking into account the laminated structure. Consider the variability in proportion of dynamic active grits during grinding, set operation is introduced to analyze the relationship between sets maximum unreformed chip thickness and brittle-ductile transition critical depth, and to predict the removal mechanism of the 4H-SiC layer. Comparing the predicted results with experimental grinding data, found that under the conditions of grinding wheel with average size of abrasive 10 μm, grinding wheel speed vs of 74 m/s, grinding depth ap of 10 μm, and feeding speed vw of 2 mm/s, the alloy backside layer can complete removal while achieving ductile removal of the 4H-SiC layer. This study provides a new method for predicting removal mechanism in grinding of laminated material and theoretical guidance for optimizing machining parameters of 4H-SiC wafer with alloy backside layer.
Read full abstract