Bite force can be a limiting factor in foraging and can significantly affect the competitive ability and lifetime fitness of mammals. Tamiasciurus squirrels feed primarily on conifer seeds and have a strong bite force to mechanically extract seeds from conifer cones with their mouths. In the North Cascades region, Douglas squirrels (Tamiasciurus douglasii) and red squirrels (T. hudsonicus) occupy ecologically different forests with different hardnesses in conifer cones. The ranges of these species overlap in a narrow hybrid zone where these forests meet near the crest of the North Cascades. We examined interspecific divergence in dietary ecomorphology in allopatry, in sympatry within the hybrid zone, and between hybrids and each parental species. We focused on three craniodental traits, including the incisor-strength index as a proxy measure for maximal bite force, cranial-suture complexity, and mandible shape. We find that these sister squirrel species differ in bite force and suture complexity in allopatry and sympatry and that mandible shape changes with the expected hardness of accessed food items, but is not significantly different between species. Furthermore, we find that hybrids display morphologies that overlap with hybrid zone red squirrels but not with hybrid zone Douglas squirrels. This work shows how important ecological processes at shallow evolutionary timescales can impact the divergence of morphological traits in taxa with extreme conservation of craniomandibular shape.