Bacteriophage Phi11 harbors a gene, gp13, encoding the putative SSB protein (GenBank accession no. NC_004615.1). SSB proteins bind to and protect the single-stranded DNA molecules from nuclease digestion and are essential for the growth and metabolic activities of the organisms encoding them. In this investigation, we have carried out the cloning, recombinant expression, and purification of rGp13 for the first time in Escherichia coli. EMSA data indicated that the purified recombinant Gp13 protein was capable of binding to single-stranded DNA. The protein exhibited maximum binding activity at 32°C. Furthermore, our bioinformatic analysis has revealed that Gp13 consists of an OB-fold, a characteristic of SSB proteins. However, the arrangement of the OB-fold is unique, being located in the C-terminal domain of Gp13. Despite the importance of SSB proteins in various metabolic processes as well as in various types of PCR, there are no reports on the purification and characterization of SSB proteins from staphylococcal bacteriophages. We expect that the purification and characterization of recombinant Gp13 will help us gain a better insight into its biological activity and make it available in large quantities for molecular biology work.