A novel Dual Bayesian optimization strategy is formed for an array of wave energy converters with adaptive resonance to maximize the annual performance through the energy conversion processes from irregular waves to electricity. A wave energy converter with adaptive resonance changes the natural frequency of power take-off dynamics for varying irregular waves, resulting in the maximum annual energy production. The first step of the two-step Dual Bayesian optimization determines the geometric layout of the array, which maximizes the first energy conversion to the total array excitation for irregular waves occurring annually. The second step optimizes the operational parameters of individual wave energy converters in the optimized array to maximize the power generation in varying sea states through simultaneous conversion to mechanical and electrical energy. The coupled hydrodynamics are solved in the frequency domain, and the power performance is evaluated by solving the Cummins’ equation in the time domain extended for multiple floating bodies, each strongly coupled with nonlinear power take-off dynamics. The proposed method is applied to a surface-riding wave energy converter, already optimized for single unit operation at individual sea states. Investigating two array layouts, linear and random, the optimized arrays after Step 1 increase the excitation spectral area by up to 40% relative to the single unit operation, indicating the synergy enhancing the first energy conversion. Subsequently, the dual-optimized linear layout attained a q-factor up to 1.13 in commonly occurring sea states, achieving improved average power generation in 60% of the evaluated sea states. The performance of the random layout exhibited the average power fluctuating along the wave spectra with a peak q-factor of 1.07. The individual adaptive resonance is confirmed in the optimized arrays, such that each surface-riding wave energy converter of both layouts adaptively resonates with the peak of the wave excitation spectra, maximizing the power generation for the different irregular waves.
Read full abstract