This work explores the possibility of developing the analog of some classic results from elliptic PDEs for a class of fractional ODEs involving the composition of both left- and right-sided Riemann-Liouville (R-L) fractional derivatives, Da+αDb-β\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${D^\\alpha _{a+}}{D^\\beta _{b-}}$$\\end{document}, 1<α+β<2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$1<\\alpha +\\beta <2$$\\end{document}. Compared to one-sided non-local R-L derivatives, these composite operators are completely non-local, which means that the evaluation of Da+αDb-βu(x)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${D^\\alpha _{a+}}{D^\\beta _{b-}}u(x)$$\\end{document} at a point x will have to retrieve the information not only to the left of x all the way to the left boundary but also to the right up to the right boundary, simultaneously. Therefore, only limited tools can be applied to such a situation, which is the most challenging part of the work. To overcome this, we do the analysis from a non-traditional perspective and eventually establish elliptic-type results, including Hopf’s Lemma and maximum principles. As α→1-\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha \\rightarrow 1^-$$\\end{document} or α,β→1-\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha ,\\beta \\rightarrow 1^-$$\\end{document}, those operators reduce to the one-sided fractional diffusion operator and the classic diffusion operator, respectively. For these reasons, we still refer to them as “elliptic diffusion operators", however, without any physical interpretation.