The measurement of handgrip force responses is important in many aspects, for example: to complement neurological assessments, to investigate the contribution of muscle mass in predicting functional outcomes, in setting realistic treatment goals, evaluating rehabilitation strategies. Normative data about handgrip force can assist the therapist in interpreting a patient's results compared with healthy individuals of the same age and gender and can serve as key decision criteria. In this context, establishing normative values of handgrip strength is crucial. Hence, the aim of the this study is to develop a tool that could be used both in rehabilitation and in the prevention of work-related musculoskeletal disorders. This tool takes the form of population-specific predictive equations, which express maximum handgrip force as a function of age. In order to collect data from studies measuring maximum handgrip force, three databases were searched. The search yielded 5,058 articles. Upon the removal of duplicates, the screening of abstracts and the full-text review of potentially relevant articles, 143 publications which focussed on experimental studies on various age groups were considered as fulfilling the eligibility criteria. A comprehensive literature review produced 1,276 mean values of maximum handgrip force. A meta-analysis resulted in gender- and world region-specific (general population, USA, Europe and Asia) equations expressing maximum force as a function of age. The equations showed quantitative differences and trends in maximum handgrip force among age, gender and national groups. They also showed that values of maximum handgrip force are about 40% higher for males than for females and that age-induced decrease in force differs between males and females, with a proved 35% difference between the ages of 35 and 75. The difference was lowest for the 60-64 year olds and highest for the 18-25 year-olds. The equations also showed that differences due to region are smaller than those due to age or gender. The equations that were developed for this study can be beneficial in setting population-specific thresholds for rehabilitation programmes and workstation exposure. They can also contribute to the modification of commonly used methods for assessing musculoskeletal load and work-related risk of developing musculoskeletal disorders by scaling their limit values.