Let T_1 be a generalized Calderón–Zygmund operator or pm I ( the identity operator), let T_2 and T_3 be the linear operators, and let T_3=pm I. Denote the Toeplitz type operator by \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} T^b=T_1M^bI_\\alpha T_2+T_3I_\\alpha M^b T_4, \\end{aligned}$$\\end{document}Tb=T1MbIαT2+T3IαMbT4,where M^bf=bf, and I_alpha is fractional integral operator. In this paper, we establish the sharp maximal function estimates for T^b when b belongs to weighted Lipschitz function space, and the weighted norm inequalities of T^b on weighted Lebesgue space are obtained.
Read full abstract