Efforts are ongoing to utilise agricultural waste to achieve a full resource use approach. Bambara groundnut is an important crop widely grown in the sub-Saharan Africa with potential future importance because of its resilience to thrive under heightened weather uncertainty and widespread droughts that have challenged food security. After harvesting, the edible nuts are separated from the shells which are discarded as waste. Therefore, this research is aimed at characterising the chemical composition and the structural properties of Bambara groundnut shells (BGS) in view of their potential application as a biomass for different bio-products. The chemical composition of BGS was found to be 42.4% cellulose, 27.8% hemicellulose, 13% lignin and 16.8% extractives. Proximate analysis showed a high amount of volatile matter (69.1%) and low moisture (4.4%). XRD analysis confirmed crystallinity of cellulose I polymer and FTIR analysis observed functional groups of lignocellulosic compounds. Thermal stability, maximum degradation temperature and activation energy were found to be 178.5°C, 305.7°C and 49.4kJ/mol, respectively. Compared to other nutshells, BGS were found to have a relatively high amount of cellulose and crystallinity that may result in biocomposites with improved mechanical properties.
Read full abstract