The Neuropterida, with about 6500 known species — living fossils in a way — at the base of the Holometabola (as a sister group of the Coleoptera), comprise Raphidioptera (about 210 species, two families), Megaloptera (about 300 species, two families) and Neuroptera (6000 species, 17 families). Megaloptera + Neuroptera is argued vs. the traditional Raphidioptera + Megaloptera. Raphidioptera are undisputedly monophyletic. Monophyly of Megaloptera is the operational hypothesis, although occasionally questioned. Sucking tubes of the larvae are the most spectacular autapomorphy of Neuroptera. The construction of larval head capsules indicates three evolutionary lines: Nevrorthiformia, and Myrmeleontiformia + Hemerobiiformia. Traditional Myrmeleontiformia is Psychopsidae + (Nemopteridae + (Nymphidae + (Myrmeleontidae + Ascalaphidae))), the present approach is (Psychopsidae + Nemopteridae) + all other Myrmeleontiformia. Hemerobiiformia are based on the ‘maxillary head’ concept. The ithonid clade Ithonidae/Rapismatidae + Polystoechothidae and the dilarid clade Dilaridae + (Mantispidae + (Rhachiberothidae + Berothidae)) are based on robust criteria. Other relationships remain unclear: Hemerobiidae + Chrysopidae (on similarity) and the ‘early offshoot’ concept of coniopterygidae (on autapomorphies) should not be perpetuated. Chysopidae + Osmylidae and (Hemerobiidae + (Coniopterygidae + Sisyridae)) + dilarid clade are discussed. Aquatic larvae, regarded as independent apomorphies of megaloptera and neuropteran Nevrorthidae and Sisyridae for a long time, are re‐interpreted as a synapomorphy of Megaloptera + Neuroptera and thus plesiomorphic within these groups. Terrestrial larvae (with cryptonephry to solve osmotic problems) are consequently apomorphic. Aquatic Sisyridae with cryptonephry of a single malpighian tubule, is conflicting, but larvae may have become secondarily aquatic, after a terrestrial intermezzo.