Obtaining lower bounds for NP-hard problems has for a long time been an active area of research. Algebraic techniques introduced by Jonsson et al. (2017) [4] show that the fine-grained time complexity of the parameterized ▪ problem correlates to the lattice of strong partial clones. With this ordering they isolated a relation R such that ▪ can be solved at least as fast as any other NP-hard ▪ problem. In this paper we extend this method and show that such languages also exist for the surjective SAT problem, the max ones problem, the propositional abduction problem, and the Boolean valued constraint satisfaction problem over finite-valued constraint languages. These languages may be interesting when investigating the borderline between polynomial time, subexponential time and exponential-time algorithms since they in a precise sense can be regarded as NP-hard problems with minimum time complexity. Indeed, with the help of these languages we relate all of the above problems to the exponential time hypothesis (ETH) in several different ways.
Read full abstract