Prohibitin proteins are multifunctional proteins located mainly at the inner membrane of mitochondria expressed in universal species. They play a vital role in mitochondria's function, cell proteolysis, senescence, apoptosis and as a substrate for ubiquitination. In this study, we used PCR cloning, protein and nucleotide acids alignment, protein structure prediction, western blot, in situ hybridization and immunofluorescence to study the characteristics of the prohibitin gene and the potential role of prohibitin in spermatogenesis and spermiogenesis processes in the Chinese fire-bellied newt Cynops orientalis. First, we cloned a 1452-bp full-length cDNA from the testis of Cynops orientalis. Second, we found that the 272 amino acids of prohibitin have a SPFH family domain. Thirdly, the western blots showed high expression of prohibitin in testis while the protein size was approximately 32kDa. Fourthly, the results of in situ hybridization and immunofluorescence experiments showed that most of the prohibitins travelled with the mitochondria's migration in Cynops orientalis. The quantities of mRNA decreased as spermiogenesis proceeded, although the signals of prohibitins existed during the whole period of spermatogenesis and spermiogenesis. In the mature germ cells, the signals of prohibitins were weak and aggregated at the end of the cell. Finally, we discovered that the Sertoli cells had a large quantity of prohibitins and we made several assumptions of prohibitins' potential roles in those cells. This is the first time that the relationship between mitochondria and prohibitin in different stages of the sperm cells in Cynops orientalis has been examined, which also revealed that Sertoli cells have abundant prohibitins.
Read full abstract