Giardiasis is the most common human protozoal infection. In their cystic phase, giardias are protected from the environment by a filamentous cyst wall made up of carbohydrates, proteins, and by two outer membranes separated from the plasma membrane of the parasite by a peripheral space. The present transmission electron microscope observations of G. lamblia cysts of human origin suggest that the extracellular peritrophic space originates from the growth, elongation, and fusion of large cytoplasmic vacuoles. As the large clear vacuoles grew in size, flattening against the inner face of the plasma membrane, they formed a single vacuole that surrounded the body of the parasite, eventually forming two outer membranes. In mature Giardia cysts, the original plasma membrane of the trophozoite becomes the outermost membrane of the cyst wall (CM1). The large vacuoles form a second membrane surrounding the cyst (CM2), and also form a third membrane (CM3), that becomes the new plasma membrane of the trophozoite. During excystation CM1 and CM2 attach to each other and fragment, leaving abundant membrane residues in the peritrophic space. Knowledge of the biochemical composition and functional properties of the complex outer membranous system of G. lamblia cysts here described will be of use to understand the survival of Giardia cysts in the environment, a major factor responsible for the high prevalence of giardiasis worldwide.
Read full abstract