Polycyclic aromatic hydrocarbons (PAHs) were determined in marine samples of various types, i.e. seawater, sediment and mussel homogenate samples. The samples were spiked with standard PAH mixtures in both polar (acetonitrile) and non-polar ( i-octane) solvents, then extracted. Extraction from seawater was performed by liquid/liquid extraction to hexane (LLE) and with solid phase extraction (SPE) discs. The water samples were filtered and unfiltered seawater, and redistilled water for comparison. The discs with PAHs adsorbed from water samples, and also the sediment and mussel homogenate samples, were extracted with acetonitrile by sonication. PAHs in the disc extracts and from the LLE were cleaned-up using TLC and next determined by GC/MS/IT (with ion-trap) and HPLC-DAD/UV. The analytical procedures were verified with deuterated PAH standard mixtures. The large differences in PAH recoveries (from 12 to 86% for sum, and from 3 to 135% for particular PAHs) do not depend solely on the type of matrix and analytical procedure applied (e.g. standard solvent, volume of evaporated sample), but also on the concentration and molecular structure of the analyte. Usually, only a fraction of each PAH content in the matrix is determined, depending on the particulate matter in seawater and the sorption properties of the solid matrix. The recoveries of deuterated PAHs are higher than those of non-deuterated compounds.
Read full abstract