Studying the altitudinal variation and driving factors of soil acid phosphomonoesterase (ACP) activity in subalpine regions is crucial for understanding nutrient cycling processes within mountainous ecosystems. This study focused on fir (Abies fabri (Mast.) Craib) forests located at three altitudes (2781 m, 3044 m, and 3210 m) on the eastern slope of Mt. Gongga in southwest China. We measured soil ACP activity alongside soil climate, nutrients, and microorganisms at various depths and elevations to investigate how these factors influence ACP activity. The results indicated that in the organic matter horizons (Oe and Oa horizons), ACP activity gradually decreased with elevation. However, the surface mineral horizon (A horizon) did not show a decline in ACP activity with increasing elevation, which could be attributed to significantly lower ACP activity recorded at the 2781 m sample site compared to the 3044 m site. Variance partitioning analysis revealed that among soil climate, nutrients, and microorganisms, soil nutrients had the most substantial impact on ACP activity across all horizons, with a particularly high contribution of 89.4% observed in the A horizon. Random forest model analysis further demonstrated that soil total carbon (TC) played a crucial role in determining ACP activity in the Oe and Oa horizons, with importance values of 8.5% and 7.3%, respectively. Additionally, soil total nitrogen (TN) was identified as the primary factor influencing ACP activity in the A horizon, with an importance value of 12.6%. Furthermore, soil ACP activity was positively regulated by the soil TC:TP and TN:TP ratios, indicating a stoichiometric control of ACP activity in the Abies fabri (Mast.) Craib forests on Mt. Gongga.