Matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) is a very easy way to obtain large sequence tags and, thereby, reliable identification of peptides and proteins. Recently discovered new matrices have enhanced the MALDI-ISD yield and opened new research avenues. The use of reducing and oxidizing matrices for MALDI-ISD of peptides and proteins favors the production of fragmentation pathways involving "hydrogen-abundant" and "hydrogen-deficient" radical precursors, respectively. Since an oxidizing matrix provides information on peptide/protein sequences complementary to that obtained with a reducing matrix, MALDI-ISD employing both reducing and oxidizing matrices is a potentially useful strategy for de novo peptide sequencing. Moreover, a pseudo-MS(3) method provides sequence information about N- and C-terminus extremities in proteins and allows N- and C-terminal side fragments to be discriminated within the complex MALDI-ISD mass spectrum. The combination of high mass resolution of a Fourier transform-ion cyclotron resonance (FTICR) analyzer and the software suitable for MALDI-ISD facilitates the interpretation of MALDI-ISD mass spectra. A deeper understanding of the MALDI-ISD process is necessary to fully exploit this method. Thus, this review focuses first on the mechanisms underlying MALDI-ISD processes, followed by a discussion of MALDI-ISD applications in the field of proteomics. © 2014 Wiley Periodicals, Inc., Mass Spec Rev 35:535-556, 2016.